infineon

DCIM ASIA Hybrid Platform

Asymmetrical IGBT design for three-level NPC1 converter in a bi-directional power conversion system Wang Heng, Infineon China

- > Name: Wang Heng
- > **Company:** Infineon China
- > Position: Field Application Engineer

> Background

- Bachelor / Master degree in Electrical Engineering
- R&D engineer in Emerson
- FAE in Infineon since 2010

Contents

Basics of NPC1 topology

- The minimum chip area requirements
- The prototype design
- **Experimental verification**
- Simulation
- Conclusion

1. Basics of NPC1 topology

Benefits from 3L – NPC1 topology:

- 1. Be able to work under higher DC bus voltage
- 2. Reduction of losses and improvement of system efficiency
- **3**. Higher equivalent switching frequency and smaller output filters
- 4. Improved EMC performance
- 5. Use of low-voltage device to replace high-voltage device (reduces system cost)

PAUAB

1. Basics of NPC1 topology

 Typical distribution of power losses in inverter mode, reactive mode, and rectifier mode.

2. The minimum chip area for NPC1 topology

> Draft chip area is normalized by power losses

both Pcon and Psw

D1/D4: highest losses at rectifier mode, both Pcon and Psw

Design hits for a bi-direction

converter

 T2/T3: highest losses at reactive mode, both Pcon and Psw

T1/T4: highest losses at inverter mode,

- D2/D3: highest losses at rectifier mode, only Pcon
- D5/D6: highest losses at reactive mode, both Pcon and Psw
- Commutation loop
 - Rectifier & Reactive mode: Long
 - Inverter mode (PF=1): **Short**

Typical power losses

distribution

mergered result

2. The minimum chip area for NPC1 topology

3. The prototype design

- a) Target application
- b) Package
- c) IGBT/Diode chips
- d) Current rating selection

3. The prototype design

 Target application: bi-directional power conversion system, e.g. PCS in Energy Storage System

Power conversion system for energy storage system			
Conditions	value		
Vdc	1300V		
Uout	480V		
Power rating	125kW		
Switching frequency	16kHz		
Line frequency	50Hz		
Та	40°C		
cosφ	1,0,-1		

New package: Easy3B is a low cost and flexible housing for kinds of topology, and enables customized pinout.

100			100
	23		9
9		6 . 9 9	
7			
1 Es			
1			
The second			1000
			10
-			1.00
0		-	
-			
			1
A			
R (0.	a contractor		
			-

(a) Easy 3B Module vertical view

3. The prototype design

 New Chip: latest 7th generation 950V fast switching IGBT(S7), covering a wide range of DC-link voltages from 500 V to 1300 V for long term operating.

> **Configuration:** current rating

4. Experimental verification

- a) layout checking
- b) switching test
- c) thermal performance
- d) electrical measure

- 4. Experimental verification
- layout checking

> Set up for Ls measurement

di/dt

- Ls value for each commutation loop
 - Ls1: **T1-D1**
 - Ls2: (D5)-**T2**-(T3)-**D4**
 - Ls3: D1-(T2)-T3-(D6)
 - Ls4: **T4-D6**

Note: Ls1 is not equal to Ls4 due to diffierent chip position, as well as Ls2 and Ls3.

- 4. Experimental verification
- switching test

Switching with Ls1/Ls4 >

a) 39 36 35 35

Short loop

Switching with Ls2/Ls3

5

- 4. Experimental verification
- thermal performance

> Zth measurement

Test method refer to JESD51

Calibration -> Thermal measure -> Math Calculation

IGBT

Diode

Copyright © Infineon Technologies AG 2020. All rights reserved.

- 4. Experimental verification
- Electrical measure

> Conduction loss

– Diode-V/I

- > Switching loss
- IGBT-Eon

> Diode-Erec

> Switching loss

IGBT-Eoff

From such measure results -> to build up accurate device models for simulation

5. Simulation

- power losses and junction temperature

> Simulation results:

Power conversion system for energy storage system		
Conditions	value	
Vdc	1200V	
Uout	480V	
Power rating	125kW	
Switching frequency	16kHz	
Line frequency	50Hz	
Та	40°C	
cosφ	1,0,-1	

- > NPC1 topology is suggested to apply asymmetrical design based on its features.
- A prototype is designed based on minimum chip area concept, and the device is simulated by accurate model from switching and thermal test data.
- Simulated results show the Tvjmax are at the same level at around 140°C in different operation modes. The 2nd and 3rd hottest temperatures are also checked as the indicator for module evaluation.
- A novel IGBT module saves costs from a tailored chip area and to be a best costperformance solution.

Part of your life. Part of tomorrow.

